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Abstract. This paper introduces a new software polymorphism tech-
nique that randomizes program data structure layout. This technique
will generate different data structure layouts for a program and thus di-
versify the binary code compiled from the same program source code.
This technique can mitigate attacks (e.g., kernel rootkit attacks) that
require knowledge about data structure definitions. It is also able to dis-
rupt the generation of data structure-based program signatures. We have
implemented our data structure layout randomization technique in the
open source compiler collection gcc-4.2.4 and applied it to a number
of programs. Our evaluation results show that our technique is able to
achieve software binary diversity. We also apply the technique to one op-
erating system data structure in order to foil a number of kernel rootkit
attacks. Meanwhile, programs produced by the technique were analyzed
by a state-of-the-art data structure inference system and it was demon-
strated that reliance on data structure signatures alone may lead to false
negatives in malware detection.

1 Introduction

A widely adopted methodology for implementing software is data abstraction,
which involves the abstraction of data structures and enables programmers to
isolate a data definition from its representation and operations. Software is im-
plemented to access and process data structures. Software implementation, if
not obfuscated, will expose certain data structure definitions as well as their lay-
outs. This observation has been exploited recently in network protocol reverse
engineering [11,16,20,29,30,40].

Knowledge about data structure layout is often used by attackers. For ex-
ample, a buffer overflow attack relies on the attacker knowing that the program
buffer is adjacent to a function pointer or return address [22]. Kernel rootkits,
especially those that manipulate kernel objects directly, require that the attacker
know the layout of specific kernel objects in order to manipulate them. In net-
work application penetration testing, if the attacker knows the structure of the
protocol message, he can reduce the fuzz space and speed up the test [21, 39].
These attacks can be foiled if we can prevent attackers from obtaining an accu-
rate data structure layout of the victim program.

Data struct layouts are also used as attack signatures in some defense tech-
niques. For example, in protocol analysis, the data structure associated with
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a protocol payload can be used to construct the exploit signature for runtime
network intrusion detection. In malware analysis, it has been reported recently
that data structure layout can be used to generate malware signatures [19].

Forrest et al. [23] has suggested that monoculture is one of the main reasons
why computers are vulnerable to large-scale, reproductive attacks. As such, ran-
domization can be introduced to increase the diversity of software. This strategy
has been widely instantiated in existing work such as address space randomiza-
tion (ASR) [8, 10, 38, 41], instruction set randomization (ISR) [6, 28], data ran-
domization [12,17], and operating system interfaces randomization [13,27]. Given
the success of existing randomization strategies, we propose another instantia-
tion of software randomization: Data structure layout randomization (DSLR).

In this paper, we demonstrate that software can be diversified by DSLR. We
propose an approach to instrument a compiler (as the compiler knows about a
program’s semantics) so that it will generate a different data structure layout
each time the same source program is compiled. We instrument the compiler
to scan the data structure definitions (e.g., struct and class) marked by the
programmer as randomizable and then reorder their member fields and insert
garbage fields. We note that DSLR is different from the software obfuscation
techniques [15]. Those techniques are used in software protection and aim at
making it harder to reverse engineer the data structure definitions in a single
binary. On the other hand, DSLR makes it difficult to derive data structure
signatures from multiple copies of the same software.

The benefit of DSLR to malware defense is two-fold: First, DSLR can miti-
gate attacks that rely on knowing the data structure layout of victim programs.
Second, the feasibility (and simplicity) of DSLR suggests that malware signa-
tures based on data structure layout may not always be effective when used
alone for malware detection.

We have implemented our DSLR technique in an open source compiler col-
lection, gcc-4.2.4, and applied it to a number of programs. The detailed design
and implementation are presented in Section 3 and Section 4, respectively. Our
evaluation results in Section 5 show that DSLR can achieve software binary di-
versity. DSLR can be used generate diverse kernel data structure definitions to
mitigate a number of kernel rootkit attacks. Meanwhile, we demonstrate that
DSLR introduces noise to a state-of-the-art data structure inference system when
generating a program’s data structure signature. Finally, DSLR imposes very low
performance overhead on gcc and on the original, un-randomized program.

2 Technical Challenges

In this section, we examine two technical challenges in realizing DSLR: Which
data structures to randomize and how to randomize them.

2.1 Randomizability of Data Structures

Data structure layout, at the binary level, is reflected by the offsets of the encap-
sulated object fields. The encapsulated objects include struct, class, and stack
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variables declared in functions (as they are related to a particular stack frame
and addressed by EBP). The first two types have been exploited to derive mal-
ware signatures [19]. We believe that a function’s local variable layout can also
be leveraged to compose signatures and thus we will also discuss randomizing
them.

However, randomizing just any data structure will not work in general as
manifested in the following examples: (1) If a data structure is used in network
communication, the communicating parties may not understand each other if
the data structure is randomized. (2) If a data structure definition is public
(e.g., defined in shared library stdio.h), it cannot be randomized. (3) There is
a special case in GNU C that allows zero-length arrays to be the last element
of a structure (a zero-length array is actually the header of a variable-length
object). If a zero-length array is declared as the last element in a struct, that
element cannot be randomized, otherwise it cannot pass gcc syntax checking.
(4) A programmer may directly use the data offset to access some fields. (This is
particularly true in programs which mix assembly and C code.) (5) To initialize
the value of a structure, the programmer uses the order declared to initialize
the structure. These fields cannot be randomized, as the program may crash. In
light of these cases, we declare a data structure as randomizable if and only if it
is not exposed to any other external programs and does not violate the original
gcc syntax and programmer intention.

Data structure randomizability is closely related to program semantics. It
would be ideal if the compiler could automatically spot all the randomizable data
structures. In practice, however, only the programmer can designate randomiz-
able data structures with confidence. Even if we could define some heuristics to
automatically spot those randomizable data structures, we could not claim both
completeness and safety. In this paper, we simply require that programmers use
new keywords to specify randomizable data structures.

2.2 Data Structure Randomization Methods

The second challenge is how to randomize a data structure. The simplest ran-
domization method would be to reorder its layout. Our primary goal is to create
binary diversity for the same software – the more variation, the better. There-
fore, we will design a randomization method which reorders the member fields
of each data structure to be randomized. Suppose a program has n such data
structures and each has m fields, then the number of possible combinations after
randomization would be (m!)n.

However, field reordering alone is still not sufficient. For example, suppose
a data structure has only two members which are both of int type. No matter
how we reorder these two fields, the layout of this data structure is still “int and
int”. As a result, to randomize a data structure containing multiple members
of the same type, we have to use a different randomization method. To this end,
we insert garbage fields into these data structures.
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3 DSLR Design in GCC

In this section we present the detailed design of DSLR in a specific compiler
system. As C/C++ is commonly used in system and user level programming,
we have implemented our DSLR technique in the popular, open-source compiler
gcc [1].

By instrumenting gcc to reorganize the fields in encapsulated data structures,
DSLR will fill the memory image with a random layout each time the program
source is compiled. Hence, we need to decide where to instrument gcc.

For a program source, gcc first builds an initial Abstract Syntax Tree (AST).
It then converts the language-specific AST into a uniform, generic AST. The
generic AST will be transformed into another representation called GIMPLE
(a representation form which has at most three operands). After GIMPLE, the
source code is converted into the static single assignment (SSA) representation
[5] to facilitate more than 20 different optimizations on SSA trees. After the
SSA optimization pass, the tree is converted back to GIMPLE which is then
used to generate a register-transfer language (RTL) tree. RTL is a hardware-
based representation that corresponds to an abstract target architecture with
an infinite number of registers. There are also a number of optimization passes
such as register allocation, code scheduling, and peepholes performed at the RTL
level.

Given these internal steps in gcc, the possible instrumentation points for
DSLR are AST, GIMPLE, SSA, and RTL. We instrumented at the AST level
for the following reasons: (1) the AST retains a lot of original information from
the program source code, such as the type and scope information for data struc-
tures and functions; (2) The AST representation is easier to understand and
the structure of the tree is concise and relatively convenient for us to modify;
(3) When generating the AST, gcc has not yet determined the layout of the
data structures, and as such we can reorder the data structure members and
reconstruct the AST without needing to compute specific memory addresses.

The data structures to be randomized can be divided into three categories:
struct, class and the function stack variables. We reorder the inner AST rep-
resentations of these data structures, which will eventually lead to the reorga-
nization of the memory layout. Note that these data structures have their own
scopes. When the AST for these data structures is generated, all the member
variables in each data structure are chained together and represented by a link
list. To perform randomization, we can just capture the head node of the list,
reorder the nodes of the list based on a random seed, and insert some “garbage”
nodes into the list if necessary.

Figure 1 shows a simple example. A data structure test has three fields: int
a, char b, and int* c. When compiled with the original gcc, the order of the
fields is in the originally declared order (Figure 1(b).) When compiled with our
DSLR-enabled gcc, the order of the fields is randomized. We also add 2 garbage
fields. Figure 1(c) shows the randomized AST representation of struct test.

As discussed in Section 2, to enhance data structure layout diversity we adopt
the following strategy: (1) different data structures at the same project build-
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struct test

 {

   int a;

     char b;

     int *c;

 };

test

a c

b

Original

test

b

G

c

a

Randomized

(a) (b) (c)

G

Fig. 1: Example of data structure randomization: (a) the original definition, (b) the original
AST, and (c) the randomized AST. The “G” nodes represent the garbage fields added to
the data structure. The dotted arrows represent the order of the fields.

ing time will be reordered differently (with different randomization seeds); and
(2) the same data structure at different project building times will be reordered
differently. We use project building time instead of compile time because when
building a project, gcc usually compiles each file individually (as specified in the
Makefile), and we need to ensure that the same data structure has a uniform
layout across one entire build. Suppose a program has two data structures, S1
and S2, which have 4 and 5 fields respectively. When we build the program us-
ing our modified gcc, S1 and S2 will be randomized differently. In addition, the
same data structure (e.g., S1) will have different layouts in memory at different
project building times. Hence, the number of possible layouts for this program
would be 4! ∗ 5!. We believe such a strategy will greatly improve the binary di-
versity of the program, as the chances of generating identical instances would be
1/(

∏j
i=1 |Si|!), where j is the total number of data structures to be randomized

and |Si| represents the total number of fields (members) in data structure Si.

4 DSLR Implementation in GCC

Our DSLR prototype is implemented in gcc-4.2.4 with over one thousand lines
of C code. We modified gcc’s AST representation to perform the randomization.
Our prototype consists of four key components: (1) keyword recognizer, which
recognizes the new keywords we introduce to specify data structure randomiz-
ability and garbage padding; (2) re-orderer, which reorders the field variables
in a data structure definition according to a random seed; (3) padder, which
inserts the garbage fields into a data structure; and (4) randomization driver,
which controls the randomization process. In the remainder of this section, we
present the details of these components.

4.1 Keyword Recognizer

We introduce several new keywords to instruct gcc regarding which data struc-
tures to randomize and how.
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...

<function-definition>       ::= {<declaration-specifier>}*<declarator>{<declaration>}*<compound-statement>

<declaration-specifier>        ::= <storage-specifier>

   | <obfuscate-specifier>

     | <type-specifier>

     | <type-qualifier>

<obfuscate-specifier>          ::= __obfuscate__(( <obfuscate-list> )) 

<obfuscate-list>                   ::= <obfuscate-property>

  | <obfuscate-list>, <obfuscate-property>

<obfuscate-property>         ::= | __reorder__ | __garbage__

<struct-or-union-specifier> ::= <struct-or-union> <identifier> "{" {<struct-declaration>}+ "}" <obfuscate-specifier>

              | <struct-or-union> "{" {<struct-declaration> <obfuscate-specifier>}+ "}"

  | <struct-or-union> <identifier> <obfuscate-specifier>

<class-specifier>         ::= <class> <identifier> "{" {<class-declaration>}+ "}" <obfuscate-specifier>

| <class> "{" {<class-declaration> <obfuscate-specifier>}+ "}"

     | <class> <identifier> <obfuscate-specifier>

...

Fig. 2: A partial BNF definition of our extend grammar for C/C++.

The first keyword is obfuscate . It is implemented similar to the way
attribute is already implemented in [3]. Similar to attribute , we offer

options for obfuscate to tell gcc which randomization method(s) it should
apply. For that we define two other keywords: reorder and garbage . The
first one informs gcc that the data structure layout should be reordered and the
latter one tells gcc to insert some garbage fields into the data structure.

There are three types of data structures that can be randomized and marked
with the obfuscate keyword: (1) structs in C, (2) classes in C++, and (3)
stack variables declared in a function. Figure 3 shows usage examples of these
keywords.

1 class Test

2 {

3    int a;

4    char b;

5    int *c;

6    ...

7 } __obfuscate__ (( __reorder__ ));

(a)

 1 #include <stdio.h>

 2 struct Test

 3 {

 4    int a;

 5    char b;

 6    int *c;

 7 } __obfuscate__ (( __reorder__ , __garbage__ ));

 8 __obfuscate__ (( __reorder__ )) int main(void)

 9 {

10    int loc1 = 1;

11    char loc2 = ’n’;

12    char loc3[4];

13    printf(" The address in struct:

14            %x , %x , %x\n", &t.a, &t.b, &t.c);

15    printf(" The address in local:

16            %x, %x, %x\n",&loc1,&loc2,&loc3);

17    return 0;

18 }

(b)

Fig. 3: Sample code (a) showing how to randomize a class in C++ and (b) showing how
to randomize a struct and stack variables in the main function.

Since we implemented DSLR at the AST level, there are two modifications
when implementing the new keywords. The first is in lexical analysis, which
makes the compiler recognize the new token. The second is to build our own
parser for the keyword.
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4.2 Reorderer

When generating the AST for a program, gcc will chain the members of a
particular data structure to a list. If it encounters the keyword reorder , it
will invoke the re-orderer when gcc finishes constructing the entire chain, and
then it can reorder the members according to the random seed generated by the
randomization driver.

We implement the re-orderer at different points for each category of data
structures. To randomize the layout for a struct, we insert the re-orderer
into function c parser struct or union specifier, which handles structs
and unions, just after this function has constructed every item in a struct
or union. Note that it is not necessary to randomize the members in a union as
it only contains one instance of the declared members at runtime. To randomize a
class, we insert our re-orderer into function unreverse member declarations.
For local variables, we insert it into the function c parser compound statement
nostart.

4.3 Padder

We implement the padder to insert garbage fields between fields of a data struc-
ture. The padder will be combined with the re-orderer to perform the random-
ization, and it will be inserted in the same places as the re-orderer. When gcc
recognizes the keyword garbage , the padder will insert garbage fields of var-
ious sizes. Such garbage creates noise in the memory image and makes it more
difficult to identify the true data structure. The size of garbage items is deter-
mined by the randomization driver.

4.4 Randomization Driver

The randomization driver supports the re-orderer and padder and is directly
related to the effectiveness of DSLR. When encountering a randomizable data
structure during project building, it will first check whether this data structure
already has a 32-bit random value stored in a project build file. If so, it will
use that random value; otherwise it will generate a random value via the glibc
function random and store it in the project build file for future use. The project
build file is a project-wide file that records the random value and the number of
fields of each data structure to be randomized. It is critical to ensuring layout
consistency across a single project build. In particular, when building projects
such as the Linux kernel and its drivers, it should use the same project build file,
otherwise the kernel may use different data structure layouts and cause crashes.
Similarly, it checks whether the total number of elements of that data structure
has been counted. If not, it will count the number of fields in that data structure
and store it in the project build file.

After knowing the random value and the total number of fields for a data
structure to be randomized, it takes two basic methods to perform the re-ordering
and padding.
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Reordering Method Suppose our randomization driver gets a random value
R and the total number of fields for a particular data structure m. It will follow
the reordering method shown in Algorithm 1.
Algorithm 1 Reordering Method
1: Input: random value R, total number of fields m, and the original order of field variables:

pos[1..m]
2: Output: the reordered fields in pos’[1..m]
3: Initialization: j ← m;
4: Reorder(j, pos[1..j]){
5: i ← R%j + 1;
6: pos’[j]← pos[i]; /*move the i-th element in pos to the rightmost available position in pos’*/
7: if(j==1) return; /*no element left in pos, and hence return*/
8: if(i!=j) pos[i] ← pos[j];
9: Reorder(j-1, pos[1..j-1]);
10: }

In the algorithm, pos[i] represents the position of the ith member/field
variable in the original data structure. Based on the original ordering of the
member variables, the method recalculates the positions of the member variables
according to the random value R. We verify that Algorithm 1 is able to generate
all m! layouts for a data structure containing m members.

Padding Method When we insert garbage fields between the member variables
of a data structure, the padding method determines the size of the garbage fields.
We limit the size to 1, 2, 4, or 8 bytes. To do that we partition the random value
R into four parts: x1, x2, x3, and x4, and each part has 8 bits. We then reduce
these 8 bits to 2 bits by calculating xi mod 4 (i ∈ {1, 2, 3, 4}). These four random
values fall into the range of 0 to 3, which correspond to 8-byte, 4-byte, 2-byte, and
1-byte sizes, respectively. Suppose there exists a data structure which contains
five member variables and the four random values (after the mod operation)
are 1, 3, 2, and 0. Then we insert 4 garbage fields between the members using
padding size of 4, 1, 2, and 8 bytes, respectively. Note that if the data structure
requires both reordering and padding, the two methods will be applied in that
order. We note that padding will not interfere with any subsequent optimization
steps performed by gcc.

5 Evaluation

In this section, we present our evaluation results. We first assess the effectiveness
of our DSLR technique in Section 5.1, and then measure the performance impact
of DSLR on both gcc and the generated binaries in Section 5.2.

5.1 Effectiveness

Estimating Data Structure Randomizability We applied our DSLR-enabled
gcc to a number of goodware and malware programs. We use open-source good-
ware such as openssh, and malware programs collected from offensive comput-
ing [2] and VX Heavens [4]. We first manually estimate the randomizability of
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data structures in these programs by inspecting their source code. As discussed
in Section 2, it is difficult to accurately determine all the randomizable data
structures in a program and we delegate that task to programmers. In our ex-
periments, we used the following heuristics for randomizability estimation: For
each data structure, we manually check if it is used/involved in one of the fol-
lowing scenarios: (1) network communication, (2) disk I/O, (3) shared library,
(4) assembly code, (5) pointer arithmetic, and (6) struct data initialization. If
so, the data structure is deemed un-randomizable.

Table 1 summarizes the results. We define ki (i ∈ {0, 1, 2}) as the total
number of structs, classes, or functions in a program. We also define ji (i ∈
{0, 1, 2}) as the total number of data structures we consider randomizable. Hence,
j0/k0, j1/k1, and j2/k2 represent the randomizability ratios for struct, class,
and function (shown in the 3rd, 4th, and 5th columns in Table 1), respectively.
We note that some of the function stack layouts could not be randomized. The
reason is that they contain goto statements (thus the label order is fixed).

Randomizability of Data Structure Possible Layout
Benchmark LOC(K)

program struct class funcs ω

42 Virus 0.88 1/1 - 24/24 4E5
Slapper 2.44 26/30 - 69/70 5E47

pingrootkit 4.81 26/27 - 57/57 5E15
Mood-nt 5.31 36/37 - 121/122 8E119
tnet-1.55 11.56 14/17 - 179/179 7E82

Suckit 24.71 110/111 - 143/144 9E159
agobot3-pre4 245.44 23/31 50/50 340/346 2E1106

patch-2.5.4 11.53 5/7 - 123/123 4E3
bc-1.06 14.29 20/21 - 166/166 6E56

tidy4aug00 15.95 9/18 - 341/341 2E52
ctags-5.7 27.22 51/79 - 488/488 3E668

openssh-4.3 76.05 63/80 - 820/838 4E1271

Table 1: Result of randomizability estimate and layout diversity

Layout Diversity bc struct is a data structure in the bc-1.06 binary. As
shown in Figure 4, this data structure compiled by the DSLR-enabled compiler
(with random number 669) has its layout changed significantly: not only has the
field order been changed, it also contains 6 additional garbage fields.

We then estimate the layout diversity of these programs. It is rather cumber-
some to experiment with all possible layouts. Instead, we numerically compute
the number of binary variants that our compiler will be able to generate for each
program, based on the result of the data structure randomizability estimation
(ji (i ∈ {0, 1, 2}) of each program). The numerical results are shown as ω in the
last column of Table 1, which is the total number of binary instances of each
program. Note ω =

∏j0+j1
i=1 |Si|!, where j0 + j1 is the total number of structs

and classes to be randomized and |Si| is the total number of fields (members)
in data structure Si.

Binary Code Diversity A direct consequence of randomizing data structure
layout is that the binary code generated will also be diversified. The reason is that



10

sign n_sign

int n_len

int n_scale

int n_refs

bc_num n_next

char * n_ptr

char * n_value

struct bc_struct

Low address

High address

0

4

8

12

16

20

24

sign n_sign

int n_len

int n_scale

int n_refs

bc_num n_next

char * n_ptr

char * n_value

struct bc_struct
Low address

High address

0

28

8

16

20

4

24

size_4 * garbage1

size_4 * garbage2

size_2 garbage3

size_8 garbage4

size_4 * garbage5

size_4 * garbage6

12

36

40

44

48

52

typedef  enum{PLUS,MINUS} sign;

typedef struct bc_struct * bc_num;

(a) (b)

Fig. 4: Data structure layout comparison: (a) original layout, and (b) randomized layout

the field variables in structs, classes, and even local variables, are accessed by
data offsets which will be changed due to the randomization. Therefore, it would
be interesting to evaluate the difference between the DSLR-generated code and
the original un-randomized code.

To evaluate code diversity, we first compiled each benchmark program with
an unmodified copy of gcc to get the original binary, whose size is represented
by I0 shown in the 2nd column of Table 2. We then used the DSLR-enabled gcc
to compile the same program and generate three instances. Their code sizes are
represented by I1, I2, and I3, respectively. Next, we compared the original binary
with the newly generated binaries using a tool called bsdiff [33]. The differ-
ence is represented by δi. bsdiff is a patch tool which generates the difference
between two binaries. Different from other binary diff-ing tools, bsdiff adopts
an “approximate matching” algorithm, which counts the byte-wise difference in
two directions (both forward and backward) rather than in one direction (often
forward). As such the results generated by bsdiff are more accurate. Note that
the results of bsdiff are highly compact [33], and thus the differences reported
by bsdiff are relatively small. According to bsdiff, DSLR can achieve a dif-
ference between 3-17%. The last column of Table 2 AV Gδ shows the average
percentage over the three instances.

Defending Against Kernel Rootkits A kernel rootkit is a piece of malicious
software that compromises a running operating system kernel. Usually an at-
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Code Diversity
Benchmark

program I0(K) I1(K) δ1(%) I2(K) δ2(%) I3(K) δ3(%) AVGδ

42 Virus 27.37 27.39 7.0 27.39 6.5 27.40 8.0 7.2%
Slapper 36.03 33.83 12.0 33.85 13.2 33.82 14.3 13.2%

pingrootkit 84.08 84.29 5.0 84.28 3.9 84.28 5.1 4.7%
Mood-nt 74.52 75.25 9.6 75.32 9.5 75.35 9.8 9.6%
tnet-1.55 174.17 175.15 7.6 175.03 7.7 174.96 6.9 7.4%

Suckit 99.61 102.20 6.3 102.17 6.8 102.17 6.4 6.5%
agobot3-pre4 904.42 909.97 8.3 912.72 8.5 909.55 7.2 8.0%

patch-2.5.4 216.56 217.51 6.1 217.48 6.2 217.51 6.2 6.2%
bc-1.06 150.39 151.64 8.8 151.55 8.2 151.57 8.2 8.4%

tidy4aug00 119.54 119.54 6.7 119.54 6.8 119.54 7.5 7.0%
ctags-5.7 527.11 531.69 16.2 531.69 16.4 531.64 16.7 16.4%

openssh-4.3 997.64 1003.39 8.5 1003.53 8.2 1003.52 8.1 8.3%

Table 2: Evaluation of binary code diversity.

tacker will use them to hide his presence on a running system. An important
feature of modern kernel rootkits is their ability to hide the existence of running
processes from an administrator. It is important, for example, that malicious
processes not appear in ps listings. To evaluate our DSLR-enabled compiler as a
defense solution, we used it to randomize the task struct data structure in the
Linux kernel (version 2.6.8) to protect against these process hiding attacks by
a number of kernel rootkits. Six rootkits were tested to determine if they were
able to hide a process under the randomized kernel. A summary of the results is
shown in Table 3. Detailed results for each rootkit are as follows:

adore-ng The adore-ng rootkit is a loadable kernel module (LKM) rootkit.
This means that it is loaded into the kernel like a driver. After being loaded,
adore-ng modifies function pointers contained in various kernel data struc-
tures. It avoids the system call table, as hooking the system call table would
make it easily detectable. Adore-ng also has a user-level component, ava.
When ava authenticates with the rootkit, a flag is added to the flags ele-
ment of the task struct for the ava process. Under the newly randomized
kernel the flags element cannot be accurately located, and so ava cannot
be properly authenticated. This renders the rootkit useless.
enyelkm While still being an LKM, enyelkm differs from adore-ng in that
it does not have a user-level control component. Instead, options are chosen
at compile time. By default, enyelkm hides any running process whose name
contains the string OCULTAR. It finds these processes by traversing the
process list and scanning the process names. Under the randomized kernel
the linked list within task structs is randomly located, making enyelkm’s
attempts to traverse the list fail. This causes process hiding to be unsuccess-
ful.
override Much like enyelkm, override is configured at compile time. Over-
ride makes extensive use of current, which is a macro that resolves to be
the address of the task struct for the currently running process. When
running on the new kernel, the randomized elements of this data structure
cause override to crash the kernel.
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fuuld Fuuld is a data-only rootkit written by one of this paper’s authors
during previous research. It uses a technique known as direct kernel object
manipulation (DKOM) to modify kernel objects directly without the need to
execute code in the kernel. It operates by using /dev/kmem to search for and
remove processes from the process list. When the task struct structure is
randomized, it is unable to properly traverse the process list.
intoxnia-ng2 The intoxnia rootkit is another LKM rootkit. Unlike adore-
ng, however, intoxnia compromises the kernel by only hooking the system
call table. Interestingly, this simplistic attack method is not troubled by the
randomization of task struct. This is because intoxnia hides a process by
filtering the data returned by the system call getdents to ensure that di-
rectory listings from the /proc file system do not reflect hidden processes.
Neither the process list, nor any elements in it, are involved. The data struc-
tures that intoxnia does modify are arguments to system calls, which cannot
be randomized because they are part of the user-level library as well.
mood-nt The mood-nt rootkit installs itself directly into the running kernel
using the /dev/kmem interface. It then proceeds to hook the system call table
and hide processes using a technique similar to that of intoxnia. As such,
this rootkit was also uninhibited by the randomization of task struct.

Many kernel rootkits operate by inserting malicious code into the kernel and
modifying existing function pointers to cause the kernel to execute it. Five of
the above rootkits (adore-ng, enyelkm, override, intoxnia, and mood-nt) employ
this attack strategy. Existing work [24,35,37] is able to effectively prevent these
attacks. However, a different type of rootkit attacks – data-only attacks – exist.
In this case, a rootkit program will directly modify kernel data structures using
a memory interface device such as /dev/kmem. The fuuld rootkit above employs
this strategy. As evidenced by its effectiveness against the fuuld rootkit, DSLR
appears to be a promising approach to defending against data-only attacks.
Given that the rootkit author must know the layout of kernel data structures
in order to modify them, randomizing that layout will significantly raise the bar
for such attacks.

Rootkit Attack Vector Prevented?
adore-ng 0.56 LKM X
enyelkm 1.2 LKM X

override LKM X
fuuld DKOM – /dev/kmem X

intoxnia ng2 LKM ×
mood-nt /dev/mem ×

Table 3: Effectiveness of DSLR against kernel rootkits

Evaluation against Laika We also performed effectiveness evaluation of DSLR
against Laika [19], a data structure inference system. The released version of
Laika only supports taking snapshots of Windows binaries, whereas we imple-
ment DSLR in gcc, which cannot compile Windows programs. To assess the
effectiveness of DSLR, we had to manually randomize the data structures in a
Windows-based program by following our randomization methods. We then used
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the Windows compiler to generate the binary code. We used three Windows-
based programs: agobot, 7-zip, and notepad. For some reason, Laika could not
process the binary image of notepad. Hence we only present the results with
7-zip and agobot.

For each application, we generated three binary instances and used Laika to
detect their data structure layout similarity. In particular, Laika uses a mixture
ratio [19] to quantify similarity: the closer the value is to 0.5, the higher the
similarity. When detecting similarity, Laika has the option of filtering out point-
ers. Table 4 summarizes the results. The code difference among the instances
of each program is around 5%. For 7-zip, when pointers are filtered out, Laika
reported mixture ratios around 0.502. With pointers, it reported mixture ratios
around 0.511. It looks like the binaries of 7-zip do not appear significantly differ-
ent to Laika. We believe that the reason is the following: 7-zip only has 25 data
structures randomized. But it has more than 80 un-randomizable data structures
which are in the library. These data structures dominated. Hence the mixture
ratios are close to 0.5. Agobot, on the other hand, contains 49 data structures
and 50 classes in its own code, so the mixture ratios went higher: 0.57 without
pointers and 0.63 with pointers. The mixture ratios indicate that, by randomiz-
ing the data structure layout, we introduced noise to Laika. Also, even though
Laika indicated high similarity among 7-zip instances, it is still debatable how
to account for the library code when detecting data structure similarity, as two
different applications (with a small number of user-level data structures) may
use lots of similar library data structures (such as those in the runtime support)
in their implementations.

Benchmark Un-randomized Randomized Code Mixture Ratio
Program LOC Binary Binary Difference w/o Pointer w/ Pointer

502K 4.26% 0.50184625 0.50942826
7zip-4.64 41.01K 498K 503K 5.08% 0.50244766 0.51070610

504K 5.88% 0.50325966 0.51487480

1.18M 6.18% 0.57368920 0.70016150
agobot3-0.2.1-priv4 497.09K 1.17M 1.19M 6.10% 0.57586336 0.60932887

1.19M 6.34% 0.56068546 0.58418036

Table 4: Evaluation of DSLR against Laika

5.2 Performance Overhead

Finally, we evaluate the performance overhead incurred by DSLR. Since we mod-
ified gcc, we would like to know how much overhead DSLR imposes on gcc. In
our experiments, we built each program 3 times. g1, g2, and g3 represent the
normalized gcc performance overhead. The 2nd, 3rd, and 4th columns of Ta-
ble 5 show these results. On average DSLR imposed around 2% performance
overhead, which is mainly caused by random value lookup, field count, and field
reordering.

Since DSLR will change the program’s data structure layout and subse-
quently change the binary code produced, we would also like to know the pro-
gram’s performance overhead due to DSLR. We measured the corresponding
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runtime overhead of the compiled binaries. The 6th, 7th and 8th columns of Ta-
ble 5 show these results. DSLR imposed less than 4% overhead. The normalized
overhead is obtained by running each binary 10 times. Note that for those virus
and daemon malware programs, we did not measure their performance overhead
(i.e. the N/As in Table 5) as they ran in the background and were thus difficult
to measure. We notice that some randomized binaries reported a slightly better
performance than their un-randomized counterparts. The reason may lie in the
data locality improvement caused by DSLR.

Overhead imposed to gcc Overhead imposed to application
Benchmark

program g1 g2 g3 AVGg o1 o2 o3 AVGo

42 Virus 3.6% 3.2% 2.7% 3.2% N/A N/A N/A N/A
Slapper 2.5% 2.8% 2.1% 2.5% N/A N/A N/A N/A

pingrootkit 3.0% 2.8% 2.7% 2.8% N/A N/A N/A N/A
Mood-nt 2.2% 2.1% 1.8% 2.0% N/A N/A N/A N/A
tnet-1.55 0.8% 1.2% 1.1% 1.0% N/A N/A N/A N/A

Suckit 1.2% 1.5% 2.3% 1.7% N/A N/A N/A N/A
agobot3-pre4 2.9% 3.3% 3.0% 3.1% N/A N/A N/A N/A

patch-2.5.4 1.6% 1.0% 1.2% 1.3% -0.9% 1.2% -2.0% -0.6%
bc-1.06 3.0% 0.9% 2.4% 2.1% 1.1% 1.0% -0.8% 0.4%

tidy4aug00 1.7% 1.5% 1.8% 1.7% 1.6% -1.3% 1.1% 0.5%
ctags-5.7 2.9% 1.8% 1.1% 1.9% -1.8% -0.7% -0.7% -1.1%

openssh-4.3 1.7% 2.4% 1.8% 2.0% 2.7% 1.8% -0.9% 1.2%

Table 5: Normalized performance overhead.

6 Limitations and Future Work

The first limitation of DSLR is that right now we do not support other languages
such as Java, as we instrument gcc at the language-specific AST level. Our next
step will involve either adding support to these languages, or studying the details
of other gcc internal representations such as GIMPLE and RTL so that DSLR
support can be made more generic.

The second limitation is that the randomizability of a data structure cannot
be determined accurately and automatically. Instead, we rely on programmers’
knowledge and judgment. As discussed in Section 2, the fundamental challenge in
automatically determining the randomizability of a data structure is safety and
completeness. To automate the identification, we could approximate the result
by performing some sort of data flow analysis to identify certain un-randomizable
data structures. For example, if we do not aim at achieving completeness, we
could adopt several heuristics to achieve automation, such as using the execution
context to determine if a data structure is used in network I/O and excluding it
from DSLR if so.

The third limitation is that we do not support other randomization tech-
niques such as struct/class splitting. Right now we only increase the field num-
ber by adding garbage fields, and we do not decrease the field numbers, which
can be achieved by struct/class splitting techniques used in the obfuscation com-
munity [15]. Our future work includes adopting those obfuscation techniques to
make it generate more polymorphic data structure layouts.
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The fourth limitation is in software distribution. When compiled by the
DSLR-enabled gcc, a program can have a large number of binary variants. It
will cause some inconvenience in software distribution. One possible solution is:
upon the request for a copy of the software, a binary instance would be generated
and shipped on-demand. Another way would be to maintain a binary repository
for large-scale on-line distribution.

7 Related Work

7.1 Security through Diversity

Address Space Randomization (ASR) ASR is a technique which dynami-
cally and randomly relocates a program’s stack, heap, shared libraries, and even
program objects. This is either implemented by an OS kernel patch [38], or mod-
ifying the dynamic loader [39], or binary code transformations [8], or even source
code transformations [10]. The goal is to obscure the location of code and data
objects that are resident in memory and foil the attacker’s assumptions about
the memory layout of the vulnerable program. This makes the determination
of critical address values difficult if not impossible. Most ASR approaches can-
not achieve data structure layout randomization, as the relative addresses of
member variables do not get changed. Also, they need system support such as a
loader kernel support, but we cannot assume that the remote system always has
ASR. Even though the source code transformation approach [10] can to some
extent generate polymorphic layout for static data in different runs, it still in-
volves loader support, and does not randomize the variable member layout for
dynamic data.
Instruction Set Randomization (ISR) ISR is an approach to preventing
code injection attacks by randomizing the underlying system instructions [6,28].
In this approach, instructions become data, and they are encrypted with a set
of random keys and stored in memory. During program execution, a software
translation is involved for decrypting the instructions before being fetched. ISR
does not randomize any data structure layout.
Data Randomization Similar to ISR, program data can also be encrypted
and decrypted. PointGuard [17] is such a technique which encrypts all pointers
while they reside in memory and decrypts them only before they are loaded into
CPU registers. It is implemented as an extension to the gcc compiler, which
injects the necessary encryption and decryption wrappers at compilation time.
Recently, Cadar et al. [12] and Bhatkar et al. [9] independently presented a new
data randomization technique which provides probabilistic protection against
memory exploits by XORing data with random masks. This is also implemented
either as a C compiler extension or a source code transformation.
Operating System Interfaces Randomization Chew and Song proposed
using operating system interface randomization to mitigate buffer overflows [13].
They randomized the system call mapping, global library entry points, and stack
placement to increase the heterogeneity. Similarly, by combining ASR and ISR,
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RandSys [27] randomizes the system service interface when loading a program,
and at run-time de-randomizes the instrumented interface for correct execution.
Multi-variant System N-variant systems [18] are an architectural framework
which employs a set of automatically diversified variants to execute the same
task. Any divergence among the outputs will raise an alarm and can hence
detect the attack. DieHard [7] is a simplified multi-variant framework which
uses heap object randomization to make the variants generate different outputs
in case of an error or attack. DieFast [32] further leverages this idea to derive a
runtime patch and automatically fix program bugs. Reverse stack execution [36],
i.e, reverse the stack growth direction, can prevent stack smashing and format
string attacks when executed in parallel with normal stack execution in a multi-
variant environment.

Compared with the above randomization approaches, DSLR exploits another
randomization dimension with different goals, application contexts, and imple-
mentation techniques.

7.2 Data Structure Layout Manipulations and Obfuscations in
Compilers

Propolice [22] is a gcc extension for protecting applications from stack-smashing
attacks. The protection is implemented by a variable reordering feature to avoid
the stack corruption of pointers.

There are several other data structure reorder optimizations in the compiler
to improve runtime performance by improving data locality and reuse. Pioneer-
ing the approach is the one proposed by Hagog et al. [26] which is a cache aware
data layout reorganization optimization in gcc. They perform structure splitting
and field reordering to transform struct and class definitions. Recently, struct-
reorganization optimizations have undergone the conversion from GIMPLE to
Tree-SSA [25]. To handle multi-threaded applications (because of the false shar-
ing), Raman et al. [34] proposed structure layout transformations that optimize
both for improved spatial locality and reduced false sharing.

Similar to code optimizations to improve program performance, there exist
code obfuscation techniques which aim to reduce the understand-ability of a pro-
gram by reverse engineering. As data structures are important components and
key clues to understand code, one of the most important obfuscations is data
structure obfuscation. Common obfuscation techniques [15] include obfuscating
arrays (such as splitting, regrouping [42], flattening, folding [14], and reorder-
ing arrays), obfuscating classes (such as splitting a class, inserting a new class,
reordering class members), and obfuscating variables (such as substituting code
for static data, merging and splitting variables [14]). These techniques are partic-
ularly useful to thwart the intermediate code analysis of Java and .NET, which
tend to be easily analyzable [31].

Compared with these two approaches, DSLR has different goals. The reorder-
ing optimization techniques mentioned above aim to improve the performance,
and their reordered layout is fixed/deterministic for all the compiled binaries.
For data structure obfuscation techniques, the data structure layout they gener-
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ate is again fixed. When taking snapshots of the memory to infer the signature,
these techniques do not increase the diversity of data structure layout. However,
we do not aim to obfuscate the data structure for a single binary. Instead, we
aim to generate polymorphic layouts among multiple binary copies.

8 Conclusion

We have presented a new software randomization technique – DSLR – that
randomizes the data structure layout of a program with the goal of generating
diverse binaries that are semantically equivalent. DSLR can be used to miti-
gate malware attacks that rely on knowledge about the victim programs’ data
structure definitions. In addition, the simple implementation of DSLR poses a
new challenge to data structure-based program signature generation systems.
We have implemented a prototype of DSLR in gcc and applied it to a number of
programs. Our evaluation results demonstrate that DSLR is able to achieve bi-
nary code diversity. Furthermore, DSLR is able to foil a number of kernel rootkit
attacks by randomizing the layout of a key kernel data structure. Meanwhile,
DSLR is able to reduce the similarity between binaries generated from the same
source program.
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